If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10+p^2=50-10p
We move all terms to the left:
10+p^2-(50-10p)=0
We add all the numbers together, and all the variables
p^2-(-10p+50)+10=0
We get rid of parentheses
p^2+10p-50+10=0
We add all the numbers together, and all the variables
p^2+10p-40=0
a = 1; b = 10; c = -40;
Δ = b2-4ac
Δ = 102-4·1·(-40)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{65}}{2*1}=\frac{-10-2\sqrt{65}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{65}}{2*1}=\frac{-10+2\sqrt{65}}{2} $
| 18=1/x | | -5p+8.4=8.4 | | 8w-7=57 | | v+6.7=-8 | | 3•x-8=2•x+7 | | 10-1.2y=2 | | 7x+4=6(2-3x) | | -4.5=−0.5(x−7.1) | | 2m=9=15 | | 3x−2=4(x−1)+2x | | 7x-21=7x-9 | | 7t-3=21 | | 14÷z=7/15 | | 14÷z=7 15 | | 19/20=p-11/4 | | 1.2x−2.4=84 | | 3x+4x+2x+144=360 | | 10x-5+3=8-x | | 3x-1/4=5x+2/6 | | 8x+4=5.8 | | x+3+x+8=234 | | (5x+3)2=10 | | 6/2.5=x/10 | | 2x+4=3x=5-3(x-7) | | ^2+2t-19=5 | | c^-6c+9=0 | | 4x^2+2x=-19 | | -7(6x-6)+1=42x+43 | | 13=(4w-8/7)+(4w-9/7) | | 11x^2=41x | | 0.12(y-3)+0.02y=0.06y-0.6 | | x^2-30=34 |